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PSF- Achilles’s heel
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Abstract—In elastography, tissue under investigation is
compressed, and the resulting strain is estimated from the
gradient of displacement estimates. Therefore, it is impor-
tant to accurately estimate the displacements (time-delay)
for good quality elastograms. A principal source of error in
time-delay estimation in elastography is the decorrelation
of the echo signal due to tissue compression (decorrelation
noise). Temporal stretching of the postcompression signals
has been shown to reduce the decorrelation noise at small
strains. In this article, we present a deconvolution filter
that reduces the decorrelation even further when applied
in conjunction with signal stretching. The performance of
the proposed filter is evaluated using simulated data.

I. INTRODUCTION

reduce decorrelation due to nonaxial tissue motion, and thus
reduce the dimensionality of the problem. The errors due to
PSF deformation become significant when the dimensionality
of the problem is reduced. In this article, we demonstrate the
correlation enhancement obtained by processing the postcom-
pression signal with a deconvolution filter following the tempo-
ral stretching step.

We propose an inverse filter approach for the deconvolution.
It can be shown that the inverse filter is a special case of the op-
timal Wiener filter that can be used in deconvolution problems.
The Wiener filter can be expressed as follows [12]:

HWicncr(f) - P—(f)s(f)

PP+ 25

where P(f) is the transfer function of the system, S, (f) is the
noise power spectral density, and S-(f) is the power spectral
density of the random distribution that the scatterers are part
of. Depending on the signal-to-noise ratio (SNR), there can be
two extreme cases of this Wiener filter [13]. When the SNR is
very high, Sn(f)/Sr(f) can be neglected, and P*(f) cancels
from the numerator and denominator, resulting in the classical
inverse filter we have used in this paper:

Very Hard problem to solve !
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Abstract— A major disadvantage of the current practice of elastography is that only the axial component of the
strain is estimated. The lateral and elevational components are basically disregarded, yet they corrupt the axial
strain estimation by inducing decorrelation noise. In this paper, we describe a new weighted interpolation method
operating between neighboring RF A-lines for high precision tracking of the lateral displacement. Due to this
high lateral-tracking precision, quality lateral elastograms are generated that display the lateral component of
the strain tensor. These precision lateral-displacement estimates allow a fine correction for the lateral decorre-
lation that corrupts the axial estimation. Finally, by dividing the lateral elastogram by the axial elastogram, we
are able to produce a new image that displays the distribution of Poisson’s ratios in the tissue. Results are
presented from finite-element simulations and phantoms as well as in vitro and in vivo experiments. © 1998
World Federation for Ultrasound in Medicine & Biology.
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lation, Lateral, Poisson’s ratio, Shear, Strain, Tracking, Ultrasound.



Beam Steering
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Estimation of Displacement Vectors and

Strain Tensors 1n Elastography Using Angular

Insonifications
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Fig. 4. Simulation model for strain tensor estimation. A linear transducer
rotates for every 1° around the center of the phantom, from —45° to 45°.
RF signals are generated for each location of the transducer before and after
phantom deformation.

(©) (d)

Fig.9. Ideal and estimated axial strain images in (a) and (b), respectively, and
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ideal and estimated lateral strain images in (c) and (d), respectively.
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Noninvasive Carotid Strain Imaging Using Angular
Compounding at Large Beam Steered Angles:
Validation in Vessel Phantoms

Hendrik H. G. Hansen*, Richard G. P. Lopata, and Chris L. de Korte
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Fig.5. Radial (top row) and circumferential (bottom row) strain images for a concentric homogeneous vessel phantom. (a) Radial and circumferential strain images
calculated by principal component analysis from 0° data only. (b)—(f) Compound radial and circumferential strain images constructed by principal component
analysis, application of the rotation matrices, projection of axial and lateral strain, projection of axial strain completed with a segment of principal component
analysis, projection of axial strain completed with a segment obtained from the rotation matrices.




Can we change the PSF ?
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Beam-forming + Research scanners

e Introduce oscillation in lateral or elevation direction
e Reduce the lateral and elevation extent of the PS




Beamforming Basics

Each element samples the propagating wave spatially. Therefore, the goal of the
beam-forming is to detect a signal in the presence of noise and
Interfering signal.

R
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Beamformer perform spatial filtering to f‘
separate signals that have
overlapping frequency content that original
from different spatial location. A
O d O
Applications d ° ° Tissue
1. Communication systems o o o
2. Hearing aid design N
3. Oil exploration < >
4. Sonar and Radar w

Thomenius 1996 IEEE UFFC Evolution of ultrasound beamformers
Van Veen and Buckley IEEE ASSP 1988



Delay-and-sum beam-former
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Real-system
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Delay calculation (fix focus)
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Path difference: simple geometric calculations
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Dynamic focusing
(calculate delay for every point)
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To separate signal with overlapping
freq. comp
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Actual response
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Minimize the squared difference between the actual and desired freq. response
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Performance of different
apodization functions

TABLE I. EVALUATION OF SELECTED APODIZATION FUNCTIONS.

Criteria 1 Criteria 2 Criteria 3 Criteria 3
Limited Energy —6-dB beamwidth Side lobe
support (% of maximum) (normalized units) maximum level (dB)
Rect Yes 100 3.8 —13
Gauss 5o By truncation 70 6.0 —43
Blackman Yes 60 7.2 —57
Sinh5 Yes 48 8.6 —78




Field II simulation 5 MHz (f # 3.2) point
scatters at focus, 60 mm depth
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Prolate Spherodial function

r |
—100 - |

dt =y (c,x)A, (c)

In time domain very little difference to side-lobe PSW —110 dB



Synthetic Aperture Imaging

Transmit Sequence (N-element Transducer)
Tx=1 Tx=2 Tx=3

SEE

Receive Sequence

High Resolution
Image
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Axial displacements
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Lateral displacements
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Sparse synthetic array

Dense Array Imaging Sparse Array Imaging
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Axial Lateral Radial strain Circumferential

displacement displacement strain

Synthetic aperture
imaging estimates

3

Conventional linear array
imaging estimates

Theoretical estimates for
homogeneous phantoms

000

Korokonda and Doyley 2012
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Ultrafast imaging techniques
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Korokunda et al. 2013
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Healthy Volunteer

SAR Elastograms Compounded Plane-Wave
Elastograms
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Virtual source sparse synthetic
array

Sparse Array Imaging
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VvSAVE (Virtual sources)
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Goal: More transmit power with lower side-lobes
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Attenuation = 0 dB

Attenuation = 1.5 dB/cm/MHz

Sub-aperture = 1

Radial Strain
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MYV beam-forming (PW)

Data dependent beam-forming
Minimizing the variance in signals:

min(w” R w)

Unity gain 1n desired directions:
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Simulation Results

Circumferential =
strain
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Phantom results (Strain maps)
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